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The dynamic characteristics of the pressure and velocity fields of the unsteady 
incompressible laminar wake behind a circular cylinder are investigated numerically 
and analysed physically. The governing equations, written in a velocity-pressure 
formulation and in conservative form, are solved by a predictor-corrector pressure 
method, a finite-volume second-order-accurate scheme and an alternating-direction- 
implicit (ADI) procedure. The initiation mechanism for vortex shedding and the 
evaluation of the unsteady body forces are presented for Reynolds-number values 
of 100,200 and 1000. 

The vortex shedding is generated by a physical perturbation imposed numerically 
for a short time. The flow transition becomes periodic after a transient time interval. 
The frequency of the drag and lift oscillations agree well with the experimental data. 

The study of the interactions of the unsteady pressure and velocity fields shows 
the phase relations between the pressure and velocity, and the influence of different, 
factors : the strongly rotational viscous region, the convection of the eddies and the 
almost inviscid flow. 

The interactions among the different scales of structures in the near wake are also 
studied, and in particular the time-dependent evolution of the secondary eddies in 
relation to the fully developed primary ones is analysed. 

1. Introduction 
The unsteady viscous flow behind a circular cylinder has been the object of 

numerous experimental and numerical studies, especially from the fluid mechanics 
and hydraulics engineering points of view, because of the fundamental mechanisms 
that his flow exhibits and its numerous industrial applications. The majority of these 
applications concern the unsteady features of the wake rather than the unsteady 
dynamic characteristics near the wall. 

Thus, most of the experimental studies investigate the unsteady behaviour of the 
alternating vortices in the wake. The work of TessiB-Solier (1931), Camichel (1931) 
and Crausse (1936) should be mentioned, as well as the more recent studies of 
Kovasznay (1949), Roshko (1954), Berger (1964), Davies (1976), Tritton (1971) and 
Cantwell (1975), among others. The above works investigate the more global 
character of the dynamics of the flow, covering in some cases study of the domain 
of laminar transition to turbulence. 

This flow configuration can also be considered as a very convenient test case for 
fluid-dynamics computations, which explains why a lot of numerical works have been 
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devoted to this type of flow. The first simulation of the vortex paths by KarmBn (191 1) 
is based upon an inviscid approach. More recent simulations of the two-dimensional 
unsteady Navier-Stokes equations for this flow are developed in the work of Son & 
Hanratty (1969), Jain & Rao (1969), Thoman & Szewczyk (1969), Jordan 6 Fromm 
(1972), Lin, Pepper & Lee (1976), Daube & Ta Phuoc LOC (1978), Martinez (1979) 
and Ha Minh, Boisson & Martinez (1980). 

Finally the unsteady flow past a circular cylinder has been studied by discrete eddy 
simulations, by Chorin (1973) and Spalart, Leonard & Baganoff (1983), among 
others. 

All the above numerical studies, except the last one, provide results in the range 
of Reynolds numbers 40-1000. These methods have the following common charac- 
teristics : they solve the unsteady Navier-Stokes equations in two-dimensional 
Helmholtz (vorticity-stream function) formulation ; they describe the relevant flow 
by global parameters such as Strouhal number as a main feature of the unsteady wake, 
drag and lift coefficients in the wall region; nevertheless, poor analysis is provided 
for the near-wake characteristics. The main goals of the present study are con- 
sequently to (i) clarify some physical aspects of the initiation of vortex shedding; 
(ii) analyse the interactions of the velocity and pressure fields outside and inside the 
wake and study the interactions of the near-wake pressure field with the distant one ; 
and (iii) analyse the different types of structures that develop as the Reynolds number 
increases. 

The numerical simulation is based upon a finite-volume velocity-pressure formu- 
lation of the unsteady Navier-Stokes equations. A semi-implicit second-order-accurate 
scheme is employed. Although the present paper concentrates on the physical aspects 
of the unsteady flow around a circular cylinder, it also shows, through the analysis 
of the results, the many potentialities and advantages of a pressurf+velocity 
numerical code applied even in non-confined (external) flows. Hence, the outlines of 
the numerical procedure are presented in Q 3, following the theoretical formulation 
of the problem in Q 2. The discussion of the results in the light of the above main points 
is the object of $4. Most of the results concern the unsteady flow past the circular 
cylinder, for Reynolds numbers of 100,200 and 1000. 

2. The theoretical formulation 
2.1. The equations 

The governing equations for the unsteady flow of an incompressible viscous fluid past 
a circular cylinder are the classical continuity and Navier-Stokes equations. They are 
written in a logarithmic-polar coordinate system, sketched in figure 1 ( a ) ,  where 

3 = e, .ii = v,, 
# = l n r ,  C =  V,.. 

The following dimensionless variables are used : 

with a the radius of the cylinder, v the kinematic viscosity and U ,  the upstream 
velocity. 

The continuity equation and the convection and diffusion terms of the momentum 
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(a) t y  

FIGURE 1.  (a) Flow configuration and coordinate system. ( b )  The 
boundary conditions on the external radius. 

equations are written in conservative form with respect to the above dimensionless 
variables : 

div V =  0, (4) 

where 

aU 2 1 ap -+ div ( Vu) -- div (grad u) = ---+ 8, , at Re eY ax 

av 2 1 ap -+ div ( Vv) -- div (grad v) = -- -+ 8, , at Re eY ay 

(7)  

2.2. The boundary conditions 
The wall boundary conditions are those of impermeability and non-slip : 

u = o ,  v = o .  (9) 

In the physical domain the flow is not confined. Nevertheless, a fictitious external 
circular boundary is needed at a large distance R, from the cylinder (figure 1 b) in 
order to solve numerically (4)-( 8). The corresponding boundary conditions are chosen 
so as to minimize the blockage effect due to this frontier. 
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Equations (5) and (6) are written a t  infinity by using the following assumptions: 

au 
at 
- + O  for v-too; 

ap 
ax -+Pm f o r v j c o ;  

the convective velocity vector V of the dimensionless term div (Vu) is that  of the 
uniform flow: 

u = - (sin x) U ,  and u = (cos x) U ,  . ( 1 0 4  

Equation (5) can be written as follows: 

(11) 
Re 

ax 2 
a2u a2u 
a x 2  a y 2  
-+- = +sinx-eu-cosxsinx. 

An analogous equation can be obtained for the v-component. The flow at infinity is 
hence governed by Oseen’s linearized equations in the same way as reported by Dennis 
& Chang (1970) for the vorticity equation. 

Equation (11) can then be solved analytically, the homogeneous equation corres- 
ponding to (11) being 

ax 
azu azu  au 
ax% ay2 2 a Y  
-+- = e~ 2 (eosx --sinz 

It has an analytic solution 
00 

Uh(x, y) = eK coSr z Ai Fi(K) eos (is), 
i-0 

where K(y) = f e u  Re, (12c) 

l( is a second-kind Bessel function and A,  a sequence of constants. 

can be written as: 
It can be shown that there exists a function G(x) such that the solution Uh(x, y) 

Uh(x, y) = G(x) exp (K(cosx- 1)-0.5y). (13) 

The general solution of (12b)  is the sum of Uh(x,y) and of one particular solution 
of (11). 

It is easy to show that the function 

Up(x, y) = -sinx 
verifies ( 1 1 ) . 

The solution of this equation is then 

u(x,y) = G(z) exp(K(eosz-1)-0.5y)+Up(x, y).  (14b) 

(14c) 
Hence 

The above relation is written for two values of y :  ym = In (R,) and ym 
where Ay is the mesh spacing. Hence, 

u(x,y)- U p ( z , y )  = G(x) exp (K(cosz- 1)-0.5y). 

= y, -Ay 
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where 

A relation similar to (15) can be obtained for the v-component, by setting 
V p ( x ,  y )  = cosx. Hence, the boundary conditions for u and v at infinity are given 

u(z,y,) = u(x,y,_,)H(x,ym,y,_,)+(1--) sin29 (164 

v(z,y,) = v(x,y,-,)H(x, y , ,  y , - , ) - ( 1 - f o  cosx. (16b)  

by 

It can be shown that function H ( x ,  y, t )  vanishes for points of the external radius 
outside the wake. It tends to unity for points of the external radius in the wake region. 
Hence, 

V(z, y)y-y, + U ,  outside the wake, (17) 

-to in the wake region. By-& 
The boundary conditions at infinity, obtained in this way, take into account two 

different features of the flow of a viscous fluid around the cylinder: the strongly 
irrotational and convective flow upstream ; and the boundary-layer type of flow in 
the wake. 

The above Oseen solution allows the progressive and smooth change from Dirichlet 
to Neumann kinds of boundary conditions. Hence, the boundary conditions at infinity 
are those of uniform flow outside the wake and those of zero derivatives in the 
y-direction for points in the wake. 

3. The numerical study 
The method used is based upon a predictor-corrector pressure scheme first 

proposed by Chorin (1968) and Amsden & Harlow (1970) (the simplified marker and 
cell, SMAC method). A staggered grid for the velocity and pressure is used, as 
developed by Harlow & Welch (1965) in the marker and cell, MAC method. In 
addition, we suggest in this paper a contribution to a rigorous calculation of the 
pressure in relation to a semi-implicit solution of the time-dependent equations. Only 
an outline of the numerical method is presented in the following: a detailed 
development can be found in the work of Braza (1981). 

3.1. The principle of the numerical method 
As the values of the velocity and pressure are known at the time step n, an 
approximate pressure field, P* = Pn, is substituted into the momentum equations 
(5) and (6). These are then solved for a corresponding velocity field V*. The vector 
form of the corresponding momentum equation is 

V*- P 
At 

+ div ( P V*) - div (grad V*) = -grad P* + 8, , 
whereaa the exact momentum equation at time step (n+ 1) is 

P-' 
At 

+ div ( Yn P+l) - div (grad P+l) = -grad P+'+ 8,. (19b) 

The intermediate velocity V* carries the exact vorticity but it does not necessarily 
satisfy the mass conservation (4) like the true velocity at time step ( n + l ) ,  P+l. 
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Since both fields V* and P+l carry the same vorticity even on the boundaries, they 
can be related by an auxiliary potential function q5, such that 

p + 1 =  v*- grad q5. (20) 

The potential 4 is calculated by taking the divergence of (20) and assuming that 
div (P+l) = 0. A Poisson equation for 4 is then obtained: 

Vzq5 = div V*. (21) 

The true velocity at time step (n+ 1) can now be evaluated from (20). The corres- 
ponding pressure is then deduced by combining the exact momentum equation 
at  time step n +  1 (19a), the approximate one (19) and (20): 

grad Pn+l = grad Pn + - + div ( P grad q5) - v Vz(grad 4). ( t) 
Whenever the momentum equation is approximated by a fully explicit scheme, as 

in the case of the SMAC method, the pressure equation is reduced to the simpler one 

The viscous term v V2(grad 4) is maintained in some implicit numerical methods 
(Lilley 1976 ; Cazalbou 1983), but the convective term is often neglected. Nevertheless, 
this term could be important in high-Reynolds-number calculations, whereas the 
influence of the viscous term is very weak. In the present method, both the exact 
equation (22) and the approximate one (23) are used for the Re = lo00 case. The 
results are similar for both cases, but the convergence is improved when using the 
completed equation (22). The boundary conditions for the pressure correction are 
deduced from (20) written at the boundary. 

It is noteworthy that (21)-(23) are only valid for interior mesh points. The direct 
use of the above relations for boundary points of the grid would require special 
treatment. This calculation is not necessary for the present numerical method, where 
staggered grids for velocity and pressure are used and integration is performed over 
elementary control volumes. Whenever pressure values on boundaries are necessary, 
they are deduced directly from the momentum and continuity equations written at 
the boundary. 

3.2. Finite-volume approximations for the governing equations 
The governing equations are integrated over elementary control volumes defined in 
figure 2. It is well known that this technique enhances the local mass and momentum 
conservation near the boundaries better than a simple finite-difference approximation 
scheme (see, for example, Ta Phuoc Loc 1980). The numerical schemes used in the 
following are second-order accurate only. Consequently, a very refined grid is needed 
for moderate- and high-Reynolds-number calculations. 

The momentum equations 
Equations ( 5 )  and (6) are integrated over the corresponding control volumes for 

the u- and v-components (figures 2 6, c). The integrals of the divergence terms over 
each control volume are transformed to boundary integrals using the Gauss divergence 
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W p+q 
P-cell U-cell V-cell 

FIGURE 2. The elementary control volumes: (a) P-cell; ( b )  U-cell; (c) V-cell. 

theorem. Hence, the u-equation is written 

with q the exterior unit vector normal to the elementary volume contour ru. 
constant value over each side of the r, contour, (24) is written 

Assuming that the terms u*, aP/ax ,  S, are constant over SZ, and that V has a 

AVE, A,,, Ahnl and Ahsl stand for the vertical and horizontal sides of the u-cell. 
Because of the logarithmic-polar coordinates, these lengths have the following 
expressions (cf. figure 2). 

= exp (YE) (YnE-YsE); = exp (YP) (Yn-ys), (26) 

(27) Ahnl = exp (Ynl) (xnE-xn); Ahsl = exp b s 1 )  (xsE-xS)* 

The points E and P do not belong to the u* grid system; hence the velocities u& 
and u$ are calculated from the u:, u,* and u , * ~  ones, by using linear second- 
order-accurate interpolations. The spatial derivatives in (25) are approximated by 
centred-finite-difference schemes. 

The nonlinear convection term is artificially linearized after splitting it into two 
parts. The first is the vector V, assumed to be a convection vehicle, taken at the time 
step n. The second is the velocity component u*, a transportable property of the 
fluid and taken at time step (n+l). A Peaceman-Rachford (1955) alternating- 
direction-implicit (ADI) method is used for the temporal approximations in (25). The 
temporal derivative for each AD1 step is approximated by forward-time relations. 
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Equation (25) is written for the two AD1 steps as follows: 

First AD1 step 
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Second AD1 step 

Equations (28) and (29) are written for all the nodes of the unknown u*, leading 
to a set of tridiagonal linear systems. These are solved by the fast-Choleski-Gauss 
method. 

The boundary conditions for the approximate velocity field u* are of similar nature 
to those for the true velocity at time step n + 1. Hence the approximate velocity u 
vanishes at the wall and i t  is calculated by the Oseen solution (cf. (16a) and (16b)), 
written in terms of u* for the external boundary. 

The solution of the v transport equation is achieved in the same way as for the 
u-component one. 

The Poisson equation for the pressure correction 

an AD1 iterative method. This equation then becomes 
For the Poisson equation a fictitious temporal term is introduced in (21) to allow 

= div (grad 4) - div V*, (30) aT 
which is integrated over the P control volume B and transformed according to the 
same assumptions as for the u-component equation. 

Within each physical time step n, after calculating the approximate velocity field 
V*, the Poisson equation (30) is solved for a number of iterations sufficient to achieve 
convergence. An iterative AD1 scheme is used. To this end, the fictitious time step 
AT is split into two parts: (k, k++) and (k++, k+ 1). The index k designates the range 
of the iteration and is not related to the physical time index n. Convergence is 

P 
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obtained when the relative error between the two last values of q5 is less than a given 
threshold value. 

The boundary conditions for $ are deduced from (20), written in the normal 
direction for each boundary. Hence, on the wall 

- = 0, 
&Y - 

and for the external boundary 

where H is the Oseen function given by (15). 
The choice of the fictitious time step A7 is made either empirically or by a 

Wachspress (1 964) optimization but the number of iterations does not significantly 
vary between the two methods. The optimization is not found to be very successful 
for this problem, as all the boundary conditions for q5 are not of the Dirichlet type. 

3.3. Accuracy 
The accuracy of the present method has been evaluated by solving a test problem 
for which an analytical solution is available as a function of time and Reynolds 
number. The Taylor problem was used (see Batchelor 1960), the solution of which 
is given by the following equations : 

u = - cos x sin y e--PtlRe ; 

v = sin x cos y e--PtlRe ; 

P = -0.25 (cos2x+cos2y) e-4tlRe. 

(33) 

(34) 

(35) 

The Navier-Stokes equations are solved numerically by the present method in a 
square domain of dimensions (in, in). The evolution of the error as a function of 
the time step At, the mesh space Ax and the Reynolds number is given in figures 
3 (a,  b, c )  respectively. 

The temporal accuracy is found to be almost of second order. Actually the 
second-order temporal accuracy of an AD1 method has been shown theoretically by 
Douglas (1955), only for the solution of the diffusion equation. As the present problem 
involves a particular temporal approximation for the nonlinear convection terms, the 
order of accuracy is found to be slightly smaller than two. This is clearly seen from 
the slopes of the error evolution in figure 3 (a). 

The space accuracy is found to be of second order, as shown in figure 3(b). The 
error as a function of the Reynolds number remains bounded and small up to 
Re = 10000 (figure 3c) .  

3.4. The values of the parameters 
The numerical parameters Ax, A y ,  At, as well as the number of nodes necessary for 
the simulation of the flow past the circular cylinder, are evaluated in order to ensure 
the stability and to minimize the numerical error for each value of the Reynolds 
number. Different values for the mesh spacing, time step and external radius are 
tested. The set of parameters finally chosen for computation, at each value of 
Reynolds number, are those giving results as close as possible to  experimental ones. 
The value of the external radius is selected as the minimum one which gives a velocity 
and pressure field being almost insensitive to a longer distance. In  particular, for 
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e 
10-3 

10-4 

in-I 
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Ax 

10 102 103 1 0 4  

Re 

FIQURE 3. (a) Test problem: the error as a function of At; Re = 1.0, Ax = 0.079, t = 0.6. (b) Test 
problem: the error as a function of Ax; Re = 60, t = 0.44. (c) The eiror as function 
of Reynolds number; At = 0.010, Ax = 0.079, t = 0.5. e, = max ( I I$j-fsj I ); e2 = el/[ I$,[; 
e3 = ( 1 / N ,  Nu)  Z I F ,  -f$, I ; e4 = Z 1 4, -fii l/Z Fi, ; where F is the analytic solution, f the numerical 
value and N ,  and N ,  respective the number of nodes in the x- and y-directions. 

Re = 1000, two different sets of parameters are tested, both giving results close to 
experimental ones (figures 9). The parameters finally chosen and the CPU time 
are given in table 1. Most of the computations are done on IBM 3033 computer. 
For the Re = 1000, case (b), the computation has been carried out on a CRAY 1s 
computer of the Centre de Calcul Vectoriel pour la Recherche of France. 
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Reynolds 
number 

20 
40 

100 
200 

Case (a)  
1000 

Case (b )  
to00 

Number Total 

Ax Ay radius unknowns step time 

5% -35ix 135.46 10608 0.025 30 

External of Time physical 

s 9  & 135.46 10608 0.01 22 

&n 2iin 114.55 13530 0.02 100 
&in din 114.55 13530 0.02 100 

&in 114.12 18360 0.02 100 

iiin iiin 114.12 31 476 0.01 100 
t I.B.M. 3033, Centre National Universitaire Sud de Calcul (CNUSC). 
$ CRAY-lS, Centre de Calcul Vectoriel pour la Recherche (CCVR). 

TABLE 1. The values of the numerical parameters 

CPU ( 8 )  

Per 
time step 

1.6641. 
1.664t 
2.691. 
2.69t 

5.84f 

2.101 

4. The results 
The results of the steady flow for Reynolds numbers 20 and 40 are reported first 

to allow comparison with experimental data and with other numerical results. Hence, 
the efficiency of the method for solving a non-confined flow and for predicting 
accurately the pressure distribution is established. The results of the unsteady flow 
for the Reynolds numbers 100,200 and lo00 are then presented. Third, the unsteady 
behaviour of secondary eddies developing in the flow at Re = 1000, as well as their 
interactions with the main eddies by two-dimensional mechanisms, are analysed. 

In the following, the conventional coefficients of the lift and drag on the cylinder 
are 

(36) 
lift force drag force c -  c -  

L- O.5pu2,2a9 D -  0.5pU2,2a9 

w, cos xdx; (37) 
2 

C,, = I,” P, sin xdx, C,, = 5,” 
w, sin x dx ; 

2 2n 
C D ,  = JozH P, cos xdx, C D ,  = ~e Jo 

where the subscripts P and V respectively represent the contributions of the pressure .. 
and viscous forces. P, is the dimensionless wall pressure and w, is the dimensionless 
wall vorticity defined as w, = wa/U,. 

The dimensionless frequency of vortex shedding is the Strouhal number 
St = fD/U,, where f is the frequency, D the diameter of the cylinder and U ,  the 
uniform-flow velocity. The pressure coefficient is defined as: C, = 2(P- P,)/pV,. 

4.1. The steadyJlow 
For Reynolds numbers of 20 and 40 the flow reaches a steady state at about t = 7 
and t = 15 respectively. Two attached vortices are formed behind the cylinder. The 
time evolution of the reattachment length and the velocity field of the steady state 
reached are shown in figures 4(a. b). Good agreement with the experimental results 
of Coutanceau & Bouard (1977a,b) is obtained. Agreement is also good with 
numerical results of Martinez (1979), using a vorticity-stream function formulation. 
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6 

Lla 4 

2 

0 

-1 Re = 40 

I ! 
FIGURE 4. (a) Reattachment length: -, this studx; 0 ,  Coutanceau & 

Bouard (1977a, b ) ;  (>, Martinez (1979). ( b )  Velocity fields. 

In  figure 5 (a) the distribution of the wall vorticity is shown. Comparison with the 
numerical results of Martinez (1979) and Fornberg (1980) is found to be satisfactory. 
Figure 5 (b) shows the distribution of the wall pressure compared with the experimental 
results of Grove et al. (1964) for Re = 20 and 40. The pressure coefficient C, shown 
in this figure is defined as C,  = (P-P,+tpV",)/(tpv",), with Po the front stagnation- 
point pressure. The calculation of the wall pressure by the present method agrees well 
with these experimental data. 

The drag coefficient and the separation angle as a function of Reynolds number 
compared with other experimental and numerical results are shown in figures 6 (a, b). 
Good agreement is again obtained. 

The computation of the flow a t  Re = loo0 shows that the steady state is also 
reached but after a longer transition time (figure 7). The oscillations of the drag 
coefficient, before symmetry has been achieved, are due to the oscillations of the 
reattachment point forward and backward. This computation is carried out without 
imposing any perturbation on the field. 

Experimental results for the flow at a Reynolds number greater than 40 report a 
loss of symmetry in the wake. As the Reynolds number increases alternating eddies 
are formed and convected in the wake. Hence, the above computation apparently 
does not represent a physically real case. The reason for this is given in $4.2. 

4.2. Vortex shedding 
As the Reynolds number becomes higher than 40 not every destabilization of the flow, 
random or not, can be damped and this leads to an asymmetrical eddy pattern. This 
generates the alternating separation of the vortices, which are convected and diffused 
away from the cylinder, forming the well-known Karman vortex paths. Such 
destabilizing effects always occur during any physical experiment on the flow around 
a circular cylinder. Conceptually, the origin of the destruction of the symmetric 
pattern can be explained by the presence of multiple perturbation sources in the 
physical model : non-uniform inlet conditions ; irregularity of the boundary conditions 
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FIGURE 5.(a) Wall vorticity: -, this study, Re = 20, 40, 60, 100. Martinez (1979): a, Re = 20; 
(>, 40; 0, 100. Fornberg (1980): A, Re = 20, A, 40, A, 100. (a) Wall pressure: -, this study; 
m, experimental results of Grove et al. (1964), Re = 20 and 40. 
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0 

0 
a 

0 
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b A  

l o  

0 20 40 60 80 100 
Re 
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Re 

RGURE 6. (a) Drag coefficient, ( b )  separation angle. Numerical results: 0,  this study; *, Martinez 
(1979); 0,  Dennis & Chang (1970); A, Hamielec & Rml (1969); 0, Tuann & Olson (1978); v, 
Ta Phuoc Loc (1980); 0, Thoman & Szewczyk (1969); 0, Son & Hanratty (1969); 0, Martinez 
& Ha Minh (1978). Experimental results: 0 ,  Tritton (1971); x , Coutanceau & Bouard (1977); a, 
Grove et al. (1964). 

1.5 

CD 

1 .o 

0.5 

- 1  I I I 

1 I 1 I 

20 40 60 80 

t = i U , f a  

FIQURE 7. Time-dependent drag coefficient at Re = 1OOO. 

(e.g. the surface roughness) ; perturbations in the running conditions of the experiment 
(e.g. vibrations). 

In  the case of the numerical simulation of the unsteady flow past a circular cylinder 
all these destabilizing effects are absent. As the geometry of the flow and the initial 
and boundary conditions are symmetric, the Navier-Stokes equations obviously lead 
to a symmetric solution even for values of Reynolds number greater than 40 (cf. Son 
& Hanratty 1969; Martinez 1979). The truncation and round-off errors, as well as 
those due to the numerical approximation schemes, are of course perturbating 
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factors, which could eventually generate vortex shedding. Nevertheless, numerical 
simulations for Reynolds numbers of 100 and 200 (Martinez 1979) and even up to 
1000 (present study) have shown that the flow always achieves a steady symmetric 
pattern after a longer or shorter establishment period (figure 7).  

The most reasonable way to generate vortex shedding should theoretically be to 
introduce into the physical model the same perturbations that occur during a physical 
experiment, if these perturbations were accurately prescribed. Unfortunately, it  is 
not possible to know the characteristics of these perturbations in detail. Instead, it 
is rational to verify first of all that different kinds of numerically introduced physical 
perturbations lead to the same flow pattern : that of periodic alternating eddies, even 
if the corresponding establishment period is different. Secondly, the perturbation that 
provides the shortest establishment phase should be chosen to save computer time. 

The numerical work of Martinez (1979), using a vorticity-stream function form- 
ulation, shows that different kinds of deterministic or random temporary perturba- 
tions are damped for Reynolds numbers less than 40, whereas they generate vortex 
shedding for Reynolds numbers of 50 and 100. The periodic flow pattern in this case 
is found to be similar to that reported from experimental studies, in spite of the 
fundamentally different nature of the perturbation between the physical and 
numerical models. Actually, the destabilizing factors in a physical experiment are not 
temporary but always present during the experiment and have a rather random 
occurrence. The fact that the numerical approach leads to the same flow pattern 
indicates that the periodic character of the flow appearing beyond a critical value 
of the Reynolds number is an intrinsic property of the Navier-Stokes equations and 
does not depend on the nature of the perturbations. Moreover, the perturbations seem 
only to be responsible for the change of the regime from steady to periodic flow, but 
they are not necessary as a source of energy to sustain the periodic flow. These two 
last points are quantitatively proven by the present numerical simulation. 

In order to generate vortex shedding two artificial perturbations are tested for 
Re = 100, both introducing a rotation of the circular cylinder for a short time 
(figure 8a) .  The perturbations introduced correspond to a clockwise rotation of the 
cylinder followed by a counterclockwise rotation. They are of the same nature as 
those used by Martinez (1979). The first perturbation shows a rather long transition 
period : the flow did not reach a strictly periodic state within the investigation time 
(figure 8 b ) .  Nevertheless the oscillations of the lift coefficient give a value of the 
Strouhal number of 0.16, in agreement with many of the experimental results referred 
to below. As the second perturbation (figure 8c)  initiates periodic vortex shedding 
earlier with the same final dynamic characteristics (Strouhal number), it  will be used 
for all the calculations. 

The periodic properties of the flow are clearly shown by the time-dependent 
evolution of the lift coefficient. In  fact the mean value of the lift coefficient for a 
symmetric body in uniform flow is zero. This can be observed in figure 8 ( c ) .  The 
frequency of the oscillations in terms of the dimensionless Strouhal number is found 
to be 0.16. This result agrees with the experimental values reported by Roshko (1954) 
and Tritton (1959), as well as with the numerical results of Jordan & Fromm (1972) 
and Martinez (1979). 

The evolution of the lift coefficient for Reynolds numbers of 200 and lo00 are shown 
in figures 8 (d,  e). The periodic character of the flow is also well predicted in these cases. 
The corresponding values of the Strouhal number are 0.20 and 0.21. The numerical 
work of Ha Minh, Boisson & Martinez (1980) based on a vorticity-stream function 
formulation reports the value of 0.19 for Re = 200. 

4-2 
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FIGURE 9. (a) Strouhal number versus Reynolds number: . , Roshko (1953) ; 0,  Jordan & Fromm 
(1972); A, Martinez (1979); ., present results, ( a )  (see table 1 ) ;  0,  present results, ( b )  (see 
table 1) .  (b )  Mean drag coefficient v e r w  Reynolds number: ., Tritton (1959); A, Wieselsberger 
(1921); 0,  Jordan & Fromm (1972); ., present results, ( a )  (see table 1 ) ;  0,  present results, ( b )  (see 
table 1). 

Experimental results of Roshko (1954) give quite dispersed values for the Strouhal 
number, in the range 0.18-0.20, for the same Reynolds number. The reason for this 
is probably the beginning of laminapturbulent transition due to an instability in the 
shear mixing layer downstream of the separation point, as reported in the above 
experimental work, among others. These turbulent features could not be predicted 
by the present code, but only the global characteristics of the flow, such as the drag 
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and lift evolutions and a mean value of the Strouhal number, deduced from the 
near-wall parameters. The computed values of the Strouhal number and of the mean 
drag coefficient versus the Reynolds number are presented in figures 9 ( a ,  b ) .  Results 
for the two sets of numerical parameters for Re = 1000 ( ( a )  and ( b )  of table 1)  are 
shown, giving both values close to experimental ones: ( a )  St = 0.217, ( b )  St = 0.21 
and (a )  C ,  = 1.21, ( b )  C, = 1.198. The second set is finally retained, in order to 
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e e 
(degrees) (degrees) 

t ( a )  ( b )  t (a)  ( b )  
80 114.88 114.56 87 114.05 114.22 
81 117.17 116.92 88 112.96 113.01 
82 119.56 119.21 89 112.41 112.53 
83 120.23 119.96 90 112.56 112.64 
84 119.19 119.00 91 113.60 113.51 
85 117.13 117.35 92 115.22 115.02 
86 115.45 115.51 

TABLE 2. Values of the separation angle in a period for Re = 100, according to the vanishing 
wall vorticity (a) ,  and the vanishing shear stress in the boundary layer ( b )  criteria 

provide a better resolution. A good agreement of St and C ,  with experimental results 
is obtained for all Reynolds numbers. 

The periodic character of the flow is less obvious in the time-dependent evolution 
of the drag coefficient (figures 10a,b). Actually, the drag force is a result of the 
convective motion of the cylinder through the fluid. Because of this motion and of 
the non-slip condition at the wall, a tangential velocity gradient is created in the 
direction normal to the wall. 

The value of this gradient near the separation point changes following the 
oscillations of the separation point forward and backward (see figure 17). Owing to 
the convective motion, there is a preferential direction of the flow even in the vicinity 
of the separation. For this reason, the time-dependent evolution of the tangential 
velocity gradient and, consequently, of the wall vorticity, are not strictly sinusoidal. 
Also, the drag coefficient is a function of wall vorticity multiplied by sinx, whereas 
lift coefficient is a function of wall vorticity and cosx (cf. (37) and (38)). The 
values of sinz are higher than those of cosx near the separation points. Hence, the 
effect described above is more pronounced in the drag coefficient evolution, than in 
time-dependent lift coefficient. Moreover, the establishment time for the drag co- 
efficient is found to be longer than the corresponding time for the lift coefficient. 

The frequency of the drag-coefficient oscillations is found to be twice that of those 
of the lift coefficient. This result is due to the contribution of the upper and lower 
alternating vortices to the drag effort. The total drag is also due to two effects: the 
pressure field (C,,) and the viscous forces (C,,) calculated by the relations (36)-(38). 
Figures 11 (a, b) show the time-dependent viscous and pressure components of the 
drag coefficient and the pressure contribution is seen to predominate. For Re = 100 
the mean value of the pressure drag is 1.02, which corresponds to 80 % of the total 
drag. This value is found to be close to the experimental results of Roshko (1954) 

The pressure and viscous drag coefficients oscillate with the same frequency as the 
total drag coefficient. Their oscillations are found to be almost in phase. 

The averaged total drag coefficient (figure 9b)  is found to be higher than that 
corresponding to the steady state at  the same value of the Reynolds number. For 
Re = 100 C ,  = 1.28 in the oscillating flow, whereas C ,  = 1.17 (cf. figure 6 a )  for the 
steady flow. The rise in the mean drag on the unsteady case is also reported by Jordan 
& Fromm (1972). 

The mean value of the unsteady drag for Re = 100 calculated by the present method 
is close to the experimental results of Tritton (1959). This fact leads us to suppose 

(CDp = 0.995). 
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(c) reattachment angles for Re = 1OOO. 

that the steady symmetric case is not a realistic description of the flow, but rather 
a mathematical concept. 

The stagnation, separation and reattachment angles correspond to points of zero 
wall vorticity (points s, d and r of figure 12a), in the present work. If the wall 
vorticity, w, = (au/ay-aav/ax) alum, is positive below zero and negative above zero, 
the point corresponds to separation, as sketched by the streamline in the same figure. 
If  the wall vorticity is negative below zero and positive above zero, the corresponding 
point is a reattachment one. Nevertheless, the above definition of separation point 
is exact only for a steady flow. In an unsteady flow, the exact separation point should 
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(a) 

FIGURE 15. Instantaneous velocity fields: (a) Re = 100; ( b )  200. 

be defined as the point of simultaneous vanishihg of the shear stress and velocity at 
a point within the boundary layer (Sears & Telionis 1975). Results uping both 
methods have been checked for Re = 100 and found to  have a discrepancy of less than 
0.3 yo (see table 2). 

The stagnation, separation and reattachment angles also oscillate periodically 
(figures 12-14). Their frequency corresponds to the Strouhal number of each lift 
coefficient. 
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FIGURE 15(b). For description see facing page. 
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I 

I n  figures 15(a ,b)  the directions of the velocity vectors are plotted at four 
(Re = 100) and five (Re = 200) phases of a period. The alternating formation, 
convection and diffusion of the vortices is clearly shown. At Re = 1000 different flow 
phenomena develop and so the description will be deferred until the next section. 

The results discussed in this section show that vortex shedding is an intrinsic 
phenomenon of the flow, well predicted by the solution of the Naviel-Stokes 
equations. It is the response of the dynamic system to the existing perturbations and 
does not depend on the details of those perturbations. The flow system has, then, 
a strongly deterministic character. The vortex shedding is generated by a loss of 
symmetry of the two-dimensional symmetric structures in the wake of the circular 
cylinder, above a critical value of the Reynolds number, owing to  physically existing 
perturbations. It constitutes a bifurcation of the solution of the Navier-Stokes 
equations, approaching transition. 

4.3.  Analysis of interactions of the velocity and pressure fields 
The principal goals of this paragraph are to study the influence of the viscous forces 
in the near-wake region on the unsteady pressure field related to the velocity field, 
the behaviour of these fields in the irrotational region, and the influence of vortex 
shedding (formation and convection regions of the alternating eddies) on the pressure 
and velocity interactions. 

Essentially these aspects are investigated using phase differences and amplitude 
variations of the time-dependent evolution of the pressure and velocity: ( a )  on the 
wall (pressure); ( b )  outside the wake (8 = 90"); and (c) in the wake (0 = 153"). The 
time interval taken is slightly greater than two periods. This study is carried out for 
Re = 100. 

The time-dependent wall-pressure coefficient, C, = (P-Pm)/O.5pu2,, is given in 
figure 16. The minimum values of the pressure are found to be less steep than the 
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maximum ones for all the angular positions investigated, except for 8 = 177.75', 
which corresponds to the vicinity of the rear axis. The pressure oscillates twice as 
fast there as the lift coefficient because of the simultaneous contribution of both the 
alternating vortices. The presence of the first harmonic frequency is also clearly 
shown. The maximum values of the wall pressure are not in phase. Their shift is 
calculated by taking the angle 8 = 60.75' as a reference. The corresponding values 
of the phase angle are 12", 23", 23" and 40". 

The variations of the wall pressure are not symmetric relatively to their mean value. 
This could be explained by the two kinds of flow pattern associated with the motion 
of the separation point (figure 17). Even if the separation angle oscillates quite 
periodically around its mean value, two dynamically different positions could be 
distinguished. I n  the first case (lower values of the separation angle, figure 17a), there 
is always an alternating vortex in the vicinity of the separation point. The occurrence 
of this vortex is periodic. I n  the second case (higher values of the separation angle, 
figure 17b) the points previously having been in a recirculating region are actually 
in a strongly convective, almost steady, motion. Hence the oscillations of the pressure 
coefficient are different in the two cases. They become more periodic as 8 increases 
and tends to 180', i.e. for points in the fully developed-wake region. 

The mean value of the wall-pressure coefficient a t  the rear axis is -0.668. The 
numerical results of Jordan & Fromm (1972) deduced from $.-w calculations give a 
value of 0.66 and the experimental results of Acrivos et al. (1965) 0.60. 

I n  order to study the effects of the viscous and irrotational zones on the pressure 
and velocity outside the wake, the time-dependent pressure coefficient is plotted a t  
six radial positions on the line 0 = 87.75" (figure 18). The unsteady velocity a t  
8 = 90" is plotted for only one radial position near the wall (figure 18b) since its 
fluctuations are found to be very low compared with those of the pressure in the outer 
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FIGURE 20. Time-dependent U ,  component at 0 = 153'. Symbols 
as in figure 18(a); ftttttftt, r / D  = 9.32. 

region. The corresponding orders of magnitude of fluctuations are approximately 2 yo 
of U ,  for the velocity modulus and 15 yo of pUZ, for the pressure. The velocity is close 
to the uniform-flow value. Also, pressure fluctuations are weaker than in the near-wall 
region. Nevertheless, they are not as much attenuated as those of the velocity. The 
periodic character of the flow is transmitted through the pressure field, even a t  a large 
distance from the wall, like an acoustic wave. Far  from the wall the diffusion term, 
v div (grad V), is low and the convective forces V grad V vary like grad P .  The fluid 
moves then as a block; hence the pressure variations are in phase ( r / D  = 3.85 and 
9.32). For the same reason, the fluctuations are more regular than near the wall, 
indicating a strongly periodic movement. 

This suggests that  such a signal could be used as a trigger criterion of the 
vortex-shedding phase, whenever a conditional (phase)-averaged analysis is t o  be 
performed. This technique is used by numerous experimental studies, e.g. Boisson, 
Chassaing & Ha Minh (1983). For the turbulent-flow Reynolds numbers the distance 
beyond which a regular periodic character of the flow can be found is obviously 
smaller than the approximate value r / D  = 3,85 corresponding to  the Re = 100 case. 

Along the line 8 = 87.75" the pressure forces are balanced by the convection and 
the viscous forces, the influence of the first being stronger beyond r / D  2 1.82 and 
the effects of the second being important for r / D  < 1.82. This balance leads to higher 
amplitudes for the pressure near the wall, where the velocity is small, and lower 
amplitudes far from the wall, where the velocity modulus is high. For the same reason 
the fluctuations of the velocity and pressure are found to be out of phase by 
approximately 180" (figure 18b,  r / D  = 0.56). The viscous forces are responsible for 
the loss of the periodic character near the wall. They affect somewhat the minima 
of the pressure variations by attenuating the influence on the frequency of the lower 
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FIGURE 21. Time-dependent transverse velocity component U y .  Symbols as in figure 18(a). 

alternating eddies. In fact the maximum amplitude in the time interval (58, 66) at 
r / D  = 0.56 is less apparent than a t  r / D  = 3.85 and 9.32. These two last positions are 
far from the influence of both the alternating eddies and the viscous forces and hence 
they oscillate regularly and with a frequency twice that of the pressure at  r / D  = 0.56. 
It is also noticeable that the viscous forces do not create phase shifting of the pressure 
fluctuations. In fact, the maxima of these fluctuations are found to be in phase along 
8 = 87.75' for all the radial positions investigated. This is due to the absence of 
convection of vortices at  8 = 87.75' (see also figure 15a). As it is shown in the 
following, the convection of eddies in the wake is responsible for a phase shifting of 
the pressure and velocity fluctuations. 

In order to examine the effects of the formation and convection of the eddies on 
the interactions of the pressure and velocity fields, the time-dependent pressure 
coefficient is plotted for the same values of r / D  as previously and at 8 = 150.75' 
(figure 19). The velocity components U, and U ,  in the directions of the classical 
Cartesian coordinates, and the velocity modulus, are also plotted at 8 = 153" 
(figures 20-22). 

The different values of the angle correspond to two adjacent mesh points for the 
pressure and velocity and are due to the staggered grid. Interpolations in order to 
calculate the pressure and velocity a t  the same point are avoided for the present 
analysis to maintain the accuracy achieved by the numerical method. The values of 
r / D  related to an instantaneous location of the eddies is shown in figure 23. 

The irrotational behaviour of the flow, as discussed for 0 = 87.75', is again found 
at  r / D  = 9.32. Obviously a longer distance (r /D = 9.32) is necessary to reach the 
almost irrotational region than the corresponding distance at 8 = 87.75' 
( r / D  = 3.85). Nevertheless, the value of r / D  = 9.32 could not be used as an external 
radius for the computations. At 8 = 180°, because of the strongly elliptic character 
of the flow due to incompressibility and viscous effects, the above external radius is 
not sufficiently far from the wall and so influences the near-wake field. It is found 
by numerical tests that the minimum value of R,/D for which boundary condition 
does not affect the near-wake flow field is 57.27. 
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FIGURE 22. Time-dependent velocity modulus at 8 = 153'. Symbols as in figure 18(a) .  

FIGURE 23. r / D  values and corresponding points in the wake, at 0 = 153'. A,  r / D  = 0.56; B, 
0.71; C, 0.90; D, 1.82; E, 3.85; F, 9.32. 

The balance between the different terms of the conservation of momentum 
(pressure, convection and diffusion) explain the fact that the pressure evolution is 
opposite in phase to the corresponding velocity at the same r / D  values (figure 24). 

The viscous effects near the wall are responsible here too for the loss of symmetry 
in the pressure evolutions relatively to their mean value. The new element for the 
present position is the phase lag observed between two adjacent r / D  values of the 
pressure and velocity evolution. This can be explained in relation to the convection 
of the eddies. 

The phase lag of the pressure coefficient is rather small in the near wake ( r / D  = 0.56 
and 0.71). In  fact, these two positions are in the same eddy, located in the formation 
area, where convection is low (points A and B in figure 23). Hence, the transfer of 
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FTGIJRE 24. Phase relations between pressure and velocity fluctuations at 0 = 153" 

properties such as the velocity and pressure occurs almost simultaneously. The 
oscillations of the pressure are then almost in phase at  r / D  = 0.56 and 0.71. 

The phase shifting increases for points far from the wall and reaches the value of 
63" for r / D  = 1.83, taking r / D  = 0.56 as the reference point. This phase difference 
is due to the convection of the eddies (points A and C, figure 23). The corresponding 
convective velocity, defined as 

is equal to  0.78, where r is the distance between points A and C, D the diameter of 
the cylinder, and ( t z - t , )  the time interval between the maxima of the pressure 
coefficients. This value is close to that reported by many experimental studies for 
a large number of Reynolds numbers covering the subcritical regime. 

Because of the relative positions of points C and D, the corresponding pressure 
fluctuations are almost in phase opposition (figure 19). Convection is also responsible 
for a loss of symmetry in the evolution of the pressure oscillations relative to their 
mean value: examining the pressure fluctuations for points C and D, i t  is found that 
the evolution of the pressure a t  C is more nearly symmetric than that a t  D. In  fact, 
C is outside the wake, whereas D is in it. 

The recirculating regions in the wake also create a strong fluctuating behaviour 
in the U,, U ,  and V evolution (figures 20 to  22), even far from the wall. 

The main points of the discussion in this section can be summarized as follows: 
The velocity and pressure fluctuations are found to be almost in phase opposition 

in the whole field. 
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The viscous effects create a loss of symmetry of the pressure and velocity 
evolutions, relative to their mean values, and a slight phase shifting (figure 24) such 
that the pressure and velocity fluctuations are deviated from the phase-opposition 
relation near the wall. 

The convection of the alternating eddies enhances a phase lag in the pressure and 
velocity fluctuations. The value of this lag gives a global convective eddy velocity 
of 0.78. 

4.4. Analysis of the behaviour of different types of structures in the near wake 
The pattern of the periodic flow with vortex shedding was described in $4.2 for the 
Reynolds-number range 100-1000. The generation of vortex shedding has been 
achieved by imposing the same numerical perturbation (figure 8 a )  for all cases. The 
global periodic character of the flow is found to be essentially the same as the 
Reynolds number increases. For a Reynolds number of 1000 it should be recalled that 
the unsteady lift coefficient (figure 8 d )  oscillates periodically and gives a Strouhal 
number of 0.21 (figure 9a). Nevertheless, a finer analysis of this flow reveals a 
different type of structure in the near-wall region. Apart from the formation of the 
classical alternating eddies, one particular feature is the presence of pronounced 
secondary vortices in the vicinity of each primary eddy. 

Before discussing results for different structures in the near wake at  Re = 1000, 
i t  is worthwhile to comment upon their validity. The first warning concerns the 
numerical accuracy of the results and the resolution related to the parameters chosen. 
If the mesh spacing and time step become smaller and the number of grid nodes 
increases, the details of even finer-scale structures are better predicted. However, flow 
features related to more large-scale structures probably do not change considerably. 
In  fact, computations performed for two different sets of numerical parameters gave 
results close to experimental ones for the mean drag and dimensionless frequency of 
oscillations (figure 9). 

The computations discussed in the present work correspond to the set of parameters 
giving the best resolution possible with a reasonable CPU per time step. Consequently, 
these computations do not predict eddies finer than the mesh spacing chosen or 
unsteady phenomena faster than the scale of time step used. However, it is probable 
that they correctly predict larger-scale eddies of the near wake. As the present method 
is only second-order accurate and the mesh spacing used is Ax/60, the Re = 1000 
results should be considered as only indicative, but they are worthy of physical 
analysis. 

The second warning concerns the physical interpretation of results for Re = 1000, 
obtained by a two-dimensional approach. It is well known from experimental work 
that the three-dimensional nature of the flow at Re = 1000 cannot be ignored. For 
this reason, the ultimate goal of a complete study is to calculate all the mechanisms 
leading to the real three-dimensional flow: appearance of new frequencies of 
oscillating structures ; generation of finer-scale eddies ; onset of the three-dimensional 
motion. 

The above phenomena, among others, constitute different states of the dynamics 
of a nonlinear system. It is worthwhile to analyse these features separately, before 
trying to study all of them simultaneously. A numerical approach to the problem 
offers the possibility of carrying out separately the abovc studies. 

Hence, the results for Re = lo00 discussed in the present work are of a qualitative 
validity. They concern only two-dimensional properties of structures in the near 
wake. 
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FIGURE 26. Wall vorticity at t = 28, Re = 200. 

The appearance of secondary vortices is not a new property of the flow in its early 
stage. The experimental work of Honji & Taneda (1969) and Bouard & Coutanceau 
(1980) report the generation of small eddies near the wall of an impulsively started 
circular cylinder at Reynolds numbers greater than 300. The numerical work of 
Martinez (1979) and Ta Phuoc LOC (1981), based upon a vorticity-stream function 
formulation, study the early stage of development of such vortices, in the Reynolds- 
number range 300-3000. These studies are limited t o  short times, corresponding to  
the beginning of the flow. 

Experimental visualizations of Crausse (1936) and Van Dyke (1982), among others, 
report the generation of a series of small eddies (cf. sketch of the flow pattern in figure 
25) ,  in the separated mixing layer a t  higher Reynolds numbers (Re > 2000). 
Furthermore, the experimental work of Roshko (1954) and Tritton (1959) locates the 
beginning of the laminar-to-turbulent transition a t  Reynolds numbers above 
15CF200, due to  an instability that occurs in the shear layer downstream of the 
separation point. The problem is to identify the different kinds of structures 
developed in the range of Reynolds number corresponding to transition towards 
turbulence. 

There is a lack of experimental and numerical results concerning the histories of 
such structures a t  intermediate values of Reynolds numbers (in the range 200-1000) 
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FIQURE 27. (a) Wall vorticity at Re = 1OOO: 0,  t = 1 ; 0, 2; A, 3. (b )  Wall 
vorticity at Re = 1OOO: 0,  t = 2.7; 0, 2.8. 

and over long times, as well as their influence on the development of the main vortex 
paths. 

The present computations for Reynolds numbers in the range 200-1000 show 
the development of secondary eddies in the near wake, apart from the main ones of 
the Karman vortex street. The Reynolds-number value of 1000 is not high enough 
to allow formation of the mixing-layer eddies of figure 25. 

The numerical simulation developed in this paper predicts the appearance of one 
secondary eddy at Re = 200 and at dimensionless time 28 (figure 26). This secondary 
eddy is adjacent to the separation point, but soon disappears. This phenomenon 
occurs periodically up to the end of the computation ( t  = loo), at time values of 33, 
39, 44, 49, 54, 59, 64, 69, 74-75, 7S80, 84-85, 90 and 95. The time interval is 5, 
which corresponds to a dimensionless frequency of 0.40. The. energy furnished to 
create and sustain the secondary eddy at Re = 200 is not sufficient to maintain such 
eddies permanently. This phenomenon can be interpreted as a weak instability in the 
shear layer next to the separation. It is more and more pronounced as the Reynolds 
number increases, as described below for the Re = 1000 case. 

First, the present simulation predicts well the early stage of development of 
secondary eddies at Re = 1000. The distribution of the wall vorticity (figures 27a, b)  
determines the appearance of the first secondary eddy at  t = 2.7. Secondly, the 
numerical method predicts the behaviour of the secondary eddies over long times. 
The evolution of the secondary eddies is very different for the symmetric (non-physical) 
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P ~ C U R E  28. Simulation without temporary perturbation. Wall vorticity a t  t = 100, Re = IOOO. 

FIGURE 29. Velocity field at t = 20, Re = 1000 
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FIQURE 30. Instantaneous velocity fields at Re = 1OOO. (a) t = 80; 
( b )  82; (c) 84; (d )  87; (e) 89. 
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FIGURE 31. Sketch of the flow pattern with different kinds of eddies, Re = 1000. 

flow compared with the unsteady flow with vortex shedding. In the first case the wall 
vorticity at t = 100 is symmetric relative to the rear axis (figure 28), indicating that 
there are two symmetric attached eddies and only one secondary eddy next to each 
separation point. 

In the second case, two secondary vortices are formed (figure 29), followed by a 
smaller single vortex downstream of the separation point. This configuration agrees 
with the experimental and numerical results referred to above for the early stage of 
development of the secondary eddies. In the present study the centres of the two main 
vortices are not symmetric, their displacement announcing the vortex shedding. The 
lower main vortex has already been slightly convected downstream. The same 
behaviour is observed for the two corresponding secondary vortices. They have been 
swept by the main eddy and are not very distinct but have diffused, forming a 
separated bubble. 

The small secondary vortex S, remains attached next to the separation point. The 
analysis of the results over a period (figure 30) shows that this property can be verified 
at  any time. Therefore the eddies of type S, follow the oscillatory motion of the 
separation point with the fundamental frequency (figure 14). 

The eddies that develop in the near wake during a given period are of three kinds 
(cf. the flow pattern of figures 30 and 31): the first consists of the two classic main 
eddies of the KBrman vortex paths (M) ; the second is that of the small secondary eddies 
(S), remaining attached and tracking the periodic motion of the separation points; 
the third (T) is developed in the near wake, is convected and merges with the main 
ones. The interactions of the eddies M and T are shown following the time-dependent 
evolution of velocity, vorticity and pressure fields over a period, in figure 32. 

The different kinds of eddies, as well as the fluid motion, are also illustrated through 
streaklines formed by marker particles injected in the flow field. An overlay of 
streakline and of velocity-vector plots is provided for some characteristic instants 
in a period, for a better visualization. The dot lines on sketch figures indicate the 
direction of the displacement of the centres of the eddies. 

The beginning and the end of the period correspond to two successive maxima of 
the oscillations of the lift coefficient (figure 8 d )  of the well-established vortex-shedding 
flow. Each characteristic value of the dimensionless time gives a phase lag from the 
beginning of the period, in terms of an angle a = ( t - t l )  x 360°/(t, - t,), where t is the 
characteristic time value, t ,  the beginning of the period and t, the end. 

At t = 80 the flow pattern of figure 32 (a )  shows the appearance of a small secondary 
eddy T, and the development of the main eddy M, and of the secondary eddies TI 
and T,. Eddy T, is clearly formed during t = 80.20 to 80.80. It arises from the steep 
velocity gradient near the wall, created by the strong rotation of fluid in eddy M, (see 
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FIGURE 32 (a). Re = 1O00, t = 80. (i) Velocity field, (ii) vorticity contours; 50 vorticity levels between 
urnin = -12.0 and w,,, = 12. (iii) Pressure contours: 70 pressure coefficient levels between 
CPmln = -4.5 and C,,,, = 0.5. 
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FIGURE 32 (c). As figure 32(a) ,  flow pattern at t = 80.80. 
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FIQURE 32 (d). Velocity field at t = 81.40. 

FIQURE 32 (e). Velocity field at t = 82.40. 

sketch of figures 32 (b )  and 32 (c). This is enhanced by an adverse pressure gradient 
towards the centre of eddy M,, leading to engulfment of fluid from below. These factors 
lead to a new separation point S,, shown also on the vorticity-contour plots. 

A t  t = 80.20 a second separation S, occurs, owing to development of eddy T,. This 
leads to formation of another eddy T4, following the same mechanism. 

A t  t = 80.80 (a  = 32O), T, and M, merge and form one main eddy ME (figure 32c) 
and, simultaneously, another secondary eddy To appears. The eddy T4 has grown 
considerably during t = 80 to 80.80. This starts to merge with M, (t = 81.40, figure 
32d), and eddy To is clearly developed. The merging is achieved a t  t = 82.40 
(figure 32b), where the beginning of merging between T9 and TI is also observed. 

At t = 82.80 (figure 32g) the eddy TI incorporates To resulting in a new main eddy, 
M,. The corresponding phase lag is 104". 

At t = 84.60, as eddy ME is convected downstream and eddy T, grows, an important 
velocity gradient is formed below eddy M, (see sketch of flow pattern figure 32f), 
leading to a new vortex T3, clearly seen at  t = 85.0. 
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FIGURE 32 (f). Velocity field at t = 84.60. 

At t = 85 (a  = 200°), T, incorporates T, (figure 32h). Another secondary eddy also 
appears, similar to the well-developed eddy T,, at t = 80. The same number T, is 
then used to identify this new eddy. 

A t  t = 85.20 ( a  = 208O), an eddy T,, appears, being of the same nature as T,. The 
same phenomena occur for the eddies T,, and T3, as for T, and T,. Another secondary 
eddy appears (figure 32i ) ,  T12. This merges with the stronger main eddy M, at 
t = 86.80 (figures 32i and 32j ) .  At the same time, eddies T3 and T,, also merge and 
form a main eddy M,. 

At  t = 88.60 (figure 32k) a new secondary eddy appears, of the same kind as T, 
as shown at t = 80. The corresponding phase difference is 344". 

The development of this eddy is due to the same mechanisms as those for eddy 
T,: owing to the convection of M, and the growth of T,, strong shear is created as 
shown in the sketch of figure 32(k) .  Also, pressure plots show engulfment of fluid in 
region A. These factors lead to separation of eddy T, from M,. 

Finally a t  t = 89 (figure 321) the same flow pattern is obtained as at t = 80. During 
the next period the phenomena described above are repeated. These are summarized 
as follows : 

Eddies of kind T are created near the wall, as a result of two different mechanisms : 
First, eddies like T,, T,, T4 and T,, are due to steep velocity and adverse pressure 
gradients near the wall, which are a consequence of the growth of an adjacent existing 
eddy. These factors lead to a new separation of the flow at the wall. The above eddies 
grow under a diffusion effect and are found to merge later with existing, well- 
developed, adjacent main eddies. Secondly, eddies like T, :nd T,, as well as T3 and 
T,,, are formed by strong shear and engulfment of fluid in the mixing layer 
downstream of separation. This process does not happen near the wall. Such eddies 
merge (T, with T, and T3 with T13) to form main eddies. 

The merging occurs under the following conditions : (i) the two eddies rotate in the 
same direction; (ii) one of them is convected with a higher velocity than the other; 
consequently the two eddies approach one another; (iii) one eddy occupies more space 
than the other. Each merging leads to a growth of the wake past the cylinder. 

The vorticity contours shown in figure 32 illustrate clearly the formation of main 
eddies, and of most of the secondary ones, as defined by the corresponding velocity 
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FIQURE 32 (h) .  As figure 32(a) ,  flow pattern at t = 85.00. 

fields. Vorticity peaks are located in the central area of each eddy, thus providing 
another means of visualization. Moreover, pressure is found to decrease towards 
vortex centres, as shown by pressure contours at the same time values. These features 
indicate rotation of fluid as a block, inside each vortex. 

The above characteristics are more pronounced in regions corresponding to main 
eddies. In  fact, these eddies are found to be more inertial than secondary ones. 

The pressure variations also illustrate the different categories of eddies and they 
correspond to the vortex-shedding phenomenon. In fact, whenever the two main 
separation points are oriented counterclockwise (t = 80.20), the values of the upper 
pressure field adjacent to the separation point, are much higher than the pressure 
values of the lower field. The opposite behaviour occurs when the two separation 
points are oriented clockwise ( t  = 85.0). The pressure contours also show engulfment 
of fluid from regions outside the wake. 

It is also found that steep pressure and vorticity gradients are developed in the 
separated-mixing-layer zones, which present a strongly unsteady character, de- 
limiting a very unstable area. It is most likely that turbulence is generated from 
this area, rather than from alternating main-eddy regions, as Reynolds number 
increases. 

5 Y L M  165 
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FIGURE 32 (i). As figure 32(a),  flow pattern at t = 85.20. 
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FIGURE 32 (j). As figure 32(a) ,  flow pattern at t = 86.80. 5-2 
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FIGURE 32 (k). As figure 32(a) ,  flow pattern at t = 88.60. 
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FIQURE 32 ( 1 ) .  As figure 32(a ) ,  flow pattern at t = 89.00. 
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The development of the secondary eddies is sustained by energy provided by the 
mean flow. This explains why the Strouhal number does not increase significantly 
beyond Re = 200 (figure 9a). As the phenomena associated with the secondary eddies 
appear once in a period, the global oscillatory character of the flow is preserved. 

Furthermore, it is worthwhile to note that secondary eddies at Re = 1000 are of 
a different type than those appearing at  higher values of Reynolds number at the 
end of the separated mixing layer (figure 25). The eddies of the separated mixing layer 
are more responsible for the laminar-to-turbulent transition than the secondary 
eddies discussed for Re = 1000. In  fact, the secondary eddies at  Re = 1000 are 
developed near the wall and not at  the end of the mixing layer after separation. The 
Reynolds number of 1000 is not high enough to generate the separated-mixing-layer 
eddies. 

Computations, not described here, using the present code in the Reynolds-number 
range 2000-5000 show the simultaneous development of secondary eddies and of those 
in the separated mixing layer demonstrating that secondary eddies are not a particular 
property of the Re = 1000 case. 

As the computations are performed only in a two-dimensional configuration, the 
secondary instabilities developed in the near wake at  Re = 1000 may not be exactly 
the same as those occurring in a physical experiment. Hence, the analysis carried out 
here is only a rough, qualitative description. However, these results could be 
used in comparisons with a physical experiment, or with other three-dimensional 
numerical results in a future paper, in order to understand how the turbulence 
appearing after separation and three-dimensional motion affect the evolution of the 
different structures in the wake, and also examine whether there are some features 
of the near-wake structures that remain two-dimensional. 

5. Conclusions 
The complex problem of the unsteady viscous flow around a circular cylinder is 

studied up to a Reynolds number of 1000 and over a long physical time. A 
second-order-accurate numerical method is used, based upon a velocity-pressure 
formulation and conservative schemes. 

The first bifurcation of the Navier-Stokes equations leading to vortex shedding 
is well predicted by the present method. Most of the results presented in this paper 
are compared with experimental data and good agreement is obtained. 

The study of the interactions of the unsteady pressure and velocity fields show a 
phase opposition of the pressure relative to the velocity at two dynamically different 
positions: outside and in the wake. 

An analysis of different scale-structures and of their interactions during the fully 
developed vortex-shedding flow has shown that the secondary eddies appearing above 
Re = 200 in the near wake have a significant presence at Re = 1000. Pairs of them 
merge and form main eddies of the Karman vortex paths, whereas another kind of 
secondary eddy merges with an already existing main one. All of these interactions 
appear once in a period. The corresponding phase lags are evaluated. The global 
periodic flow is not greatly influenced by these phenomena. 

This work was sponsored by the Direction des Recherches Etudes et Techniques, 
Grant no. 83-34.061.00.470.75.01. A part of the computation time has been provided 
by the Centre de Calcul Vectoriel pour la Recherche. The authors are grateful to Dr 
H. C .  Boisson for the very helpful discussions they had with him on the physical 



Pressure and velocityjelds in the wake of a circular cylinder 129 

interpretation of the results. The authors thank also Mr G. Leblanc for the computing 
technical assistance, and Mr J. Bonnefont, Mrs P. Herault and Mr J. Pons for their 
technical aid. 

R E F E R E N C E S  

ACRIVOS, A., SNOWDEN, D., GROVE, A. S. & PETERSEN, E. E. 1965 J .  FZuid Mech. 21, 737. 
AMSDEN, A. A. & HARLOW, F. H. 1970 Los Alamos Scientijc Rep. No. La-4370. 
BATCHELOR, G. K. (ed.) 1960 The Collected W o r h  of G. I .  Taylor, vol. 2. Cambridge University 

BOISSON, H. C., CHASSAINQ, P. & HA MINH, H. 1983 Phys. Fluids 26,653. 
BOUARD, R. & COUTANCEAU, M. 1980 J .  Fluid Mech. 101, 583. 
BRAZA, M. 1981 These Docteur-Ing&nieur, I.N.P. Toulouse. 
CAMICHEL, C. 1931 Rapports sur les travaux effectubpendant lea annbs 1930 et 1931. Privat Editeur. 

Editeur. 
CAZALBOU, J. B. 1983 These Docteur-Ingbnieur, I.N.P. Toulouse. 
CHORIN, A. J. 1968 Math. Cornput. 22, 745. 
CHORIN, A. J. 1973 J .  Fluid Mech. 57, 785. 
COUTANCEAU, M. & BOUARD, R. 1977a J. Fluid Mech. 79, 231. 
COUTANCEAU, M. & BOUARD, R. 19773 J .  Fluid Mech. 79, 257. 
CRAUSSE, E. 1936 These Doctorat-Bs-Sciences, Universitk de Toulouse. 
DAUBE, 0. & TA PHUOC LOC 1978 J .  Mic. 17,651. 
DENNIS, S.  C. R. & CHANQ, G.-Z. 1970 J. Fluid Mech. 42, 471. 
DOUQLAS, J. 1955 J. SOC. Indust. Appl. Math. 3, 42. 
FORNBERQ, B. 1980 J .  Fluid Mech. 98, 819. 
GROVE, A. S., SHAIR, F. H., PETERSEN, E. E. & ACRIVOS, A. 1964 J. Fluid Mech. 19,60. 
HAMIELEC, A. E. & RAAL, J. D. 1969 Phys. FZuids. 12, 11 .  
HA MINH, H., BOISSON, H. C. & MARTINEZ, G. 1980 Trans. ASME C:  J .  Heat Transfer 13,35. 
HARLOW, F. H. 6 WELCH, J. E. 1965 Phys. Fluids 8, 2182. 
HONJI, H. & TANEDA, S. 1969 J. Phys. SOC. Japan 27, 1668. 
JAIN, P. C. & RAO, K. S. 1969 Phys. Fluids Suppl. (11) 12, 57. 
JORDAN, S. K. & FROMM, J. E. 1972 Phys. Fluids 15, 371. 
KARMAN, T. VON 1911 Phya. 2. xiii, 49. 
KOVASZNAY, L. S. G. 1949 Proc. R. SOC. Lond. A 198, 174. 
LILLEY, D. G. 1976 A I A A  J. 14, 749. 
LIN, C., PEPPER, D. & LEE, S. 1976 A I A A  J .  7,900. 
MARTINEZ, G. 1979 These Docteur-Ingbnieur, I.N.P. Toulouse. 
MARTINEZ, G. & HA MINH, H. 1978 In Proc. I d .  Con$ on Numerical Methods in Laminar and 

PEACEMAN, D. W. & RACHFORD, H. H. 1955 J .  SOC. Indust. Appl. Math. 3,28. 
ROSHKO, A. 1953 NACA Tech. Note. No. 2913. 
ROSHKO, A. 1954 NACA Rep. No. 1191. 
SEARS, W. & TELIONIS, D. P. 1975 SZAM J .  Appl. Math. 28, 215. 
SON, J. S. & HANRATTY, T. J. 1969 J .  Fluid Mech. 35, 369. 
SPALART, P. R., LEONARD, A. & BAGANOFF, D. 1983 N A S A  Tech. Mem. 84328. 
TANEDA, S .  1972 Recent Research on Unsteady Boundary Layers, Vol. 2 (ed. E. A. Eichelbrenner). 

TA PHUOC LOC 1980 J. Fluid blech. 100, 11  1 .  
TEISSIE-SOLIER, M. 1931 These Doctorat-&-Sciences, Universitb de Toulouse. 
THOMAN, D. C. & SZEWCZYK, A. A. 1969 Phys. Fluids, Suppl(I1) 12, 76. 
TRITTON, D. J. 1971 J .  Fluid Mech. 45, 203. 

Press. 

Turbulent Flow, Swansea. Pineridge. 

Quebec Lava1 University Press. 



130 

TRITTON, D. J. 1959 J .  Fluid Mech. 6 ,  547. 
TUANN, S. Y. & OLSON, M. D. 1978 Computera and Fluids 6 ,  219. 
VAN DYKE 1982 An Album of Fluid Motion. Parabolic. 
WACHSPRESS, E. L. 1964 Iterative Solution of Elliptic System. Prentice Hall. 
WIESELSBERQER, V. C. 1921 Physik. 2. 22, 321. 

M .  Braza, P .  Gh.axsaing and H .  Ha Minh 


